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ABSTRACT 

Epilepsy is a common neurological condition that can occur in anyone at any age. 

Electroencephalogram (EEG) signals of non-focal (NF) and focal (F) types contain brain activity 

information that can be used to identify areas affected by seizures. Generally, F EEG signals are 

recorded from the epileptic part of the brain, while NF EEG signals are recorded from brain 

regions unaffected by epilepsy. It is essential to correctly detect F EEG signals, when and where 

they occur, as focal epilepsy can be successfully treated by surgical means.  However, all EEG 

signals are complex and require highly trained personnel for right interpretation. To overcome 

the associated challenges, in this study a computer-aided detection (CAD) system to aid in the 

detection of F EEG signals has been developed, and the performance of nonlinear features for 

differentiating F and NF EEG signals is compared. Moreover, it is noted that nonlinear features 

can effectively capture concealed patterns and rhythms contained in the EEG signals. Overall, it 

was found that the CAD system will be useful to clinicians in providing an accurate and objective 

paradigm for localization of the epileptogenic area.  

 

Keywords – Computer-aided detection system; electroencephalogram signals; epilepsy; focal; 

non-focal. 
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1. Introduction 

 

Epilepsy is a persistent brain disorder that can afflict anyone at any age [1]. It is defined as the 

occurrence in a patient of two or more unprovoked seizures. Seizures occur due to the excessive 

electrical discharges of brain cells. As stated by the World Health Organization, currently, nearly 

50 million people globally suffer from epilepsy [2]. This condition affects the patient socially as 

well as economically [2]. It has been reported that epilepsy attributes to approximately 0.6% of 

the global burden of disease. Nonetheless, patients suffering from epilepsy can lead a normal life 

with the appropriate treatment. Therefore, it is crucial to be able to correctly diagnose epilepsy 

and to administer the right treatment to the patient.   

The electroencephalogram (EEG) records brain activity from the scalp and can be used to 

diagnose epilepsy. Quantitative analysis of EEG characteristics can be helpful to diagnose the 

condition. Magnetic resonance imaging (MRI) is another modality useful in the diagnosis of 

epilepsy. Currently, EEG is the preferred data type employed for epilepsy diagnosis due to its 

low cost.   

Focal epilepsy is a form of the condition that occurs in certain brain areas [3]. The focal (F) EEG 

signals are acquired from this region, where the first ictal EEG changes are observed. Non-focal 

(NF) EEG signals are obtained from brain regions that do not contribute to seizure onset. Both F 

and NF EEG signals lack seizure segments [3].  It is reported that greater than 20% of patients are 

affected by generalized epilepsy which manifest from the entire brain, while more than 60% of 

patients suffer from focal (partial) epilepsy, localized to a smaller region of the brain [3]. It is 

difficult to treat patients with focal epilepsy by medication alone [3]; hence the need to localize 

the epileptic zone.  Thus, detection and discernment of F and NF signals is an important area of 

quantitative research in this field, as the localization of epileptogenic regions is crucial for 

successful epilepsy surgery. Since treatment of focal epilepsy often involves removal of the 

affected brain area surgically [4], it is crucial to discern F EEG signals and their origin.    

Substantial research work has been done thus far to characterize F versus NF signals. Typically, 

F EEG signal morphology is characterized by more rhythmic and less chaotic behavior as 

compared to NF EEG signals [5]. However, it is challenging to identify the EEG signals visually, 

due to the presence of low amplitude and random components. Thus, computer-aided detection 

(CAD) systems have been proposed to develop an automated tool for aid in the identification of 

EEG characteristics. Several have thus far been conducted, summarized in Table 2. Sharma et al. 
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[6] decomposed EEG signals with an empirical mode decomposition (EMD) technique and 

extracted entropy features. Their group found an accuracy for EEG classification of 87%. In their 

subsequent work, they analyzed the signals using the discrete wavelet transform (DWT), and 

extracted entropy features from the decomposed signals [7]. This approach yielded an accuracy 

of 84 ± 11%. In their latest study, they utilized the tunable-Q wavelet transform (TQWT) prior to 

extraction of entropy features. This novel decomposition technique achieved a diagnostic 

accuracy of 95% [8].  

Deivasigamani et al. [9] proposed a dual-tree complex wavelet transform (DTCWT) method to 

decompose EEG signals and obtained mean and standard deviation (SD) values from the 

decomposed coefficients. They reported a sensitivity of 98% and specificity of 100% in classifying 

the signals into F and NF classes. Das et al. [10] combined two decomposition methods, namely 

the EMD and DWT, and applied these methods to the data. Entropy features were once again 

extracted and were then classified with an accuracy of 89%. Sharma et al. [11] employed a wavelet 

filter bank and an entropy feature extraction algorithm to separate NF from F EEG signals. The 

method accuracy was 94%.  

Gupta et al. [12] applied the flexible analytic wavelet transform (FAWT) and subjected the signals 

to a maximum of 15 levels of decomposition. They then extracted entropy features from the 

coefficients and characterized them into two classes. They obtained a sensitivity and specificity 

of 93% and 96%, respectively. Bhattacharrya et al. [13] employed TQWT for decomposition and 

extracted entropy features from the EEG data to achieve an accuracy of 85%. In their subsequent 

study, Bhattacharrya et al. [14] proposed to decompose the EEG signals into rhythms using the 

empirical wavelet transform (EWT), and subjected these rhythms to a reconstructed phase space 

(RPS) analysis to distinguish between F and NF signals. Their novel algorithm yielded a 

sensitivity and specificity of 88% and 92%, respectively. Sriraam et al. [15] investigated the 

capabilities of multi-features in the differentiation of NF and F signals. They adopted statistical, 

frequency-based, and nonlinear feature extractors. It was reported that the integration of different 

features could localize the epileptogenic areas of the brain with an accuracy of 92%. Arunkumar 

et al. [16] extracted several entropy features, and subjected these features to a non-nested 

generalized exemplars classifier. Their methodology achieved an accuracy level of 98%.   

It can be noted from Table 2 that nonlinear features are commonly employed for epilepsy analysis. 

The motivation of our study is to evaluate the performances of the nonlinear features utilized in 

the CAD algorithm. The entire database is employed to extract widely used nonlinear features. 
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These nonlinear features have shown clear separation between the two groups. Also, unique 

recurrence, bispectrum and cumulant plots are used for class separation. Moreover, the 

challenges associated with the CAD system, and future developments, are discussed.  

  

2. Data Types Used for Analysis  

 

The EEG signals discussed herein were obtained from the publicly available Bern-Barcelona EEG 

database [5]. They were collected at the Department of Neurology of the University of Bern from 

five patients suffering from epilepsy. The patients underwent long-term intracranial EEG 

recording with intracranial strip and depth electrodes. All patients had been diagnosed with 

longstanding pharmacoresistant temporal lobe epilepsy.     

A total of 3,750 F EEG signals and 3,750 NF EEG signals were used in this study (N = 10,240 

samples per signal). The database consists of bivariate EEG signals in the X and Y time series. 

Figure 1 shows an example of F and NF EEG signals in the X-series, Y-series and X-Y series 

respectively.  

 



5 
 

 

Figure 1: A sample of (a) F and (b) NF EEG signal in the X-series, (c) F and (d) NF EEG signals in the Y-series, and 

(e) F and (f) NF EEG signals in the X-Y series. 



6 
 

3. Computer-Aided Detection System 

 

The CAD system is employed to investigate the effectiveness of the various feature extraction 

techniques in the detection of NF and F EEG signals. Figure 2 is a typical block diagram of the 

development of a CAD system. It encompasses the input of NF and F EEG signals followed by 

the pre-processing of the signals. Thereafter, several feature extraction methods are implemented 

to obtain useful and discriminative characteristics. These features are ranked according to their 

statistical significance. Lastly, the highest-ranked features are input to the classifier.  

The subsequent sections describe the different processes within the CAD systems.  

 

 

Figure 2: A typical block diagram of a CAD system. 

 

3.1 Pre-processing  

 

Usually, EEG signals are subjected to pre-processing for removal of artifacts and noise prior to 

feature extraction. However, no pre-processing was performed in this study, as the signals are 

already pre-processed when downloaded from the database. Nonetheless, we have subjected 

these signals to a differencing operation to obtain the EEG signals in the X-Y series (see Figure 

1(e) and (f)) before the extraction of features [17]. 

 

3.2 Extraction of Nonlinear Features 

  

In this study, nine nonlinear features were extracted and compared. The use of nonlinear features 

can be helpful to describe salient properties of EEG signal morphology, which tend to appear 
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complex and chaotic [18]. Extraction of such nonlinear features has been widely implemented to 

determine the important characteristics of EEG signals [18].      

a. Detrended Fluctuation Analysis (DFA) 

The DFA is often used to detect inherent self-similarity characteristics of the EEG [19]. The variant 

of the DFA, namely the root mean square (RMS) multi-fractal DFA is implemented together with 

the DFA feature.  

b. Entropies  

The entropy feature is useful to evaluate the uncertainty and irregularity present in EEG signals 

[20]. In general, the entropy of the EEG signal is higher when the variability and complexity of 

the EEG signals increases.  

The entropy types extracted in this study are the  modified multi-scale entropy (MMSE) with ten 

scales employed [21], sample [22], approximate [23], fuzzy [24], Kolmogorov-Sinai [25], Renyi 

[26], Shannon [27], bispectrum entropy 1, bispectrum entropy 2, and bispectrum phase entropy 

[28], Tsallis [29], wavelet [30], and permutation [31].  

c. Fractal Dimension (FD) 

The fractal dimension or FD metric [32] can be utilized to compare the complexity of details in 

the EEG. Hence, it enables detection of EEG signal patterns and details that may not be evident 

visually.  

d. Hjorth  

There are three Hjorth parameters, namely the mobility, complexity, and activity, which are used 

to quantify EEG signal morphology [33].  

e. Hurst Exponent 

The Hurst exponent [34] is an estimation of predictability and self-similarity in the EEG. A greater 

magnitude for the Hurst exponent is indicative of a smoother and less complicated EEG signal.  

f. Kolmogorov Complexity  

This parameter describes the characteristics of the EEG signals [35]. Therefore, the more random 

the signals are, the longer is the length of the description.  
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g. Largest Lyapunov Exponent (LLE) 

The LLE is computed to obtain an estimate of the degree of chaos present in the signals [36]. 

Therefore, it is noted that the higher the LLE value, the more complex the signals are.  

h. Lempel-Ziv Complexity (LZC) 

The LZC [37] is used to measure the repetitiveness of the EEG signals. Hence, the more repetitive 

the signal, the higher the LZC value. 

i. Recurrence Qualitative Analysis (RQA)  

The RQA measures the number of times of recurrences in order to evaluate the complexity of the 

EEG signals [38]. The parameters of the RQA include laminarity, transitivity, determinism, 

trapping time, the entropy of diagonal line lengths, mean diagonal line length, maximal vertical 

line length, maximal diagonal line length, recurrence time (1st type and 2nd type), recurrence time 

entropy, and the recurrence rate [39, 38, 40, 41]. 

 

3.3 Feature Ranking 

 

Extracted features can be ranked according to the student t-test, corresponding to the level of 

statistical significance [42]. In reference to the literature (see Table 2), several other feature ranking 

techniques, namely the receiver operating characteristic (ROC) approach [43], Bhattacharyya 

distance [44], Wilcoxon test [45], the Kullback-Leibler distance [43], and the Kruskal-Wallis test 

[46],  may also be used to order extracted features according to level of significance. 

 

3.4 Classification 

 

Classification is the last step in the formation of the CAD system. Based upon the literature (see 

Table 2), the most commonly used classifier is the least squares-support vector machine (LS-SVM) 

[47]. However, the adaptive neuro-fuzzy inference system (ANFIS) [48], k-nearest neighbor 

(KNN) [49], and the non-nested generalized exemplars [50] classifiers are also used. Herein, the 

LS-SVM classifier using polynomial 3 is implemented in accord with the majority of published 

work, which uses this classifier. Also, the 10-fold cross-validation strategy is adopted in this study.  
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4. Results 

 

In this study, nonlinear features were extracted from EEG signals. When 23 features were 

extracted using the LS-SVM for classification, the maximum accuracy of 87.93% was obtained, 

with a sensitivity and specificity of 89.97% and 85.89%, respectively. All extracted features are 

listed in Table 1 in descending order according to statistical significance. It is noted that all 52 F 

and NF features recorded in the table have a p-value of < 0.01.   

According to Table 1, the MMSE is highest ranked. This implies that the MMSE is the most 

statistically significant as compared to other features. MMSE quantifies the pattern and detects 

regularity in the EEG signals. It can be noted that most of the entropy features have higher values 

for NF than for F EEG signals. This is typically caused by the F EEG signals being more periodic 

and less random. Figure 3 is a graphical representation of the top ten extracted features. Higher 

mean values are evident for NF as compared to F EEG signals.  

The RQA features in Table 1 reflect higher values in the F class as compared to the NF class. This 

is because the RQA evaluates the number of patterns and occurrences of spikes and subtle 

changes in the EEG signals, which are more present in F EEG. Thus, the more rhythmic focal EEG 

signals result in higher mean RQA parameters, which can be useful identify concealed signal 

patterns. Similarly, the DFA features portray higher values in the F class versus NF class, as the 

DFA parameter detects rhythmic patterns present in the signals.  

Figures 4 to 6 display the typical recurrence, bispectrum, and cumulant plots of F and NF EEG 

signals, respectively. The F recurrence plot in Figure 4 appears more periodic and homogenous, 

whereas the NF recurrence plot portrays a more random and inconsistent depiction. In Figure 5, 

the two plots are unique, displaying different characteristics. The amplitudes of the F bispectrum 

are larger, while the NF bispectrum plot reflects the presence of smaller amplitudes. Additionally, 

the F plot has more consistent peaks as compared to the NF plot. This means that the bispectrum 

features in the F plot are more periodic and regular. Similarly, the F cumulant plot has higher 

amplitudes than the NF cumulant plot in Figure 6.   

These figures indicate that the extracted nonlinear features (recurrence, bispectrum, and 

cumulants) can be efficaciously utilized for classification, and that they provide visually apparent 

distinctions between the two classes.  
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Figure 3: The top 10 highly-ranked features extracted from the two classes of EEG signals, with their 

corresponding mean and SD values. 

 

 

Figure 4: A sample of (a) F and (b) NF X-Y difference recurrence plots. 
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Figure 5: A sample of (a) F and (b) NF X-Y difference bispectrum plots. 

 

 

Figure 6: A sample of (a) F and (b) NF X-Y difference cumulants plots. 

 

Table 1: The mean and SD value of the extracted features, p < 0.01. 

No. Features extracted  
F 

Mean ± SD 

NF 

Mean ± SD 

1 MMSE: E10 0.659 ± 0.128 0.768 ± 0.140 

2 MMSE: E9 0.646 ± 0.130 0.757 ± 0.145 

3 MMSE: E8 0.633 ± 0.133 0.747 ± 0.150 
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4 MMSE: E7 0.615 ± 0.135 0.731 ± 0.156 

5 MMSE: E6 0.585 ± 0.135 0.700 ± 0.160 

6 RQA: Laminarity 0.856 ± 0.0973 0.756 ± 0.155 

7 MMSE: E2 0.397 ± 0.124 0.511 ± 0.174 

8 MMSE: E5 0.551 ± 0.135 0.665 ± 0.165 

9 MMSE: E4 0.512 ± 0.135 0.627 ± 0.173 

10 MMSE: E3 0.448 ± 0.129 0.562 ± 0.173 

11 MMSE: E1 0.372 ± 0.118 0.476 ± 0.157 

12 RQA: Determinism 0.742 ± 0.127 0.634 ± 0.166 

13 Sample entropy 0.581 ± 0.0795 0.651 ± 0.111 

14 Approximate entropy 0.591 ± 0.120 0.688 ± 0.157 

15 
RQA: Entropy of diagonal line 

lengths 
0.492 ± 0.0903 0.428 ± 0.100 

16 Fuzzy entropy 0.420 ± 0.106 0.508 ± 0.175 

17 DFA 0.772 ± 0.0673 0.728 ± 0.0833 

18 RQA: Trapping time 0.275 ± 0.0725 0.237 ± 0.0616 

19 RQA: Mean diagonal line length 0.324 ± 0.0606 0.293 ± 0.0535 

20 RQA: Maximal vertical line length 0.122 ± 0.0781 0.0865 ± 0.0542 

21 RQA: Recurrence time 2nd type 0.273 ± 0.0916 0.224 ± 0.0941 

22 Kolmogorov-Sinai entropy 0.409 ± 0.238 0.298 ± 0.231 

23 RQA: Recurrence time entropy 0.719 ± 0.0579 0.693 ± 0.0564 

24 Hjorth mobility 0.210 ± 0.0776 0.247 ± 0.108 

25 RQA: Transitivity 0.974 ± 0.00170 0.974 ± 0.00130 

26 Renyi entropy 0.783 ± 0.0677 0.761 ± 0.0711 

27 Shannon entropy 0.0709 ± 0.0910 0.0483 ± 0.0466 

28 RQA: Maximal diagonal line length 0.0260 ± 0.0501 0.0149 ± 0.0388 

29 RQA: Recurrence time 1st type 0.869 ± 0.0889 0.884 ± 0.0779 

30 Bispectrum: Entropy 2 0.370 ± 0.107 0.393 ± 0.138 

31 FD 0.635 ± 0.0450 0.645 ± 0.0599 
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32 RQA: Recurrence rate 0.332 ± 0.0467 0.325 ± 0.0366 

33 Kolmogorov complexity 1 ± 0 1 ± 0.001 

34 Bispectrum: Entropy 1 0.581 ± 0.0868 0.595 ± 0.114 

35 RMS Multi-Fractal DFA 10 0.0915 ± 0.0869 0.0799 ± 0.0838 

36 RMS Multi-Fractal DFA 6 0.0798 ± 0.0730 0.0701 ± 0.0740 

37 Tsallis entropy 0.0305 ± 0.0523 0.0243 ± 0.0433 

38 RMS Multi-Fractal DFA 5 0.0776 ± 0.0728 0.0681 ± 0.0754 

39 Wavelet entropy 0.0245 ± 0.0493 0.0188 ± 0.0396 

40 RMS Multi-Fractal DFA 1 0.0629 ± 0.0567 0.0554 ± 0.0634 

41 RMS Multi-Fractal DFA 3 0.0761 ± 0.0709 0.0673 ± 0.0732 

42 LLE 0.456 ± 0.19 0.479 ± 0.205 

43 RMS Multi-Fractal DFA 2 0.0880 ± 0.0828 0.0779 ± 0.0886 

44 Permutation entropy 0.815 ± 0.0571 0.822 ± 0.059 

45 RMS Multi-Fractal DFA 8 0.0741 ± 0.0711 0.0659 ± 0.0732 

46 Hjorth complexity 0.555 ± 0.0970 0.565 ± 0.0993 

47 RMS Multi-Fractal DFA 7 0.0739 ± 0.0700 0.0662 ± 0.0709 

48 RMS Multi-Fractal DFA 4 0.0800 ± 0.0726 0.0717 ± 0.0815 

49 RMS Multi-Fractal DFA 9 0.0831 ± 0.0733 0.0749 ± 0.0832 

50 Hurst exponent 0.758 ± 0.0653 0.754 ± 0.0845 

51 LZC 0.500 ± 0.091 0.5 ± 0 

52 Bispectrum: Phase entropy 0.971 ± 0.528 0.971 ± 0.530 

where EX refers to the different scales (1 to 10) of the MMSE feature. 

where RMS Multi-Fractal DFA X refers to the different scales (1 to 10) of the variant DFA feature.  

 

5. Discussion 

 

Published CAD system algorithms for automatic detection of F EEG signals are summarized in 

Table 2. It is evident from the table that most of the systems employed various decomposition 
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techniques prior to the extraction of features. These decomposition approaches include the EMD 

[51], DWT [52], DT-CWT [53], WFB [54], TQWT [55], FAWT [56], and EWT [57]. Hence, it is noted 

that a combination of decomposition techniques and nonlinear features have successfully and 

efficiently been used to characterize F and NF EEG signals. 

The entropy feature extraction technique is often used in quantitative epilepsy analysis [6, 7, 10, 

8, 11, 12, 13, 15, 16]. This may be because entropy features are simple to implement, and they can 

also well quantify abrupt changes in EEG morphology. Therefore, it is used as a feature by many 

investigators during the development of CAD systems.  

Nonetheless, Deivasigamani et al. [9] proposed to calculate the mean and SD of the coefficients 

obtained from the decomposed EEG signals and separate them into their corresponding classes 

(F or NF). Also, Bhattacharyya et al. [14], instead of extracting entropy features, have utilized the 

reconstructed phase space (RPS) with central tendency measure (CTM) to differentiate the two 

classes of EEG signals.  

Overall, it can be noted that all nine nonlinear features extracted are highly discriminative 

between F and NF classes, even though entropy features performed better in differentiation.   

The main highlights of this study are as follows: 

i. This is the first study to compare the performances of many nonlinear features for F and 

NF EEG signal quantitative analysis. 

ii. The nonlinear features are able to recognize subtle patterns present in the EEG signals, 

and are assistive to characterize them according to their respective classes.    

iii. We have utilized the entire EEG database in this review.  

iv. Unique recurrence, bispectrum and cumulant plots are proposed to discriminate the two 

classes of EEG signals visually. 

The disadvantages of our findings are: 

i. Quantitative analysis for epilepsy is computationally intensive. Incorporation of a 

graphics processing unit would be useful to better handle the level of complexity during 

analysis of EEG morphology.  

ii. More subjects are required to validate the CAD system. Currently, the database consists 

of the data from five subjects.  
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Table 2: A summary of published journal articles using the Bern-Barcelona EEG database for automated detection 

of F and NF EEG signals. 

Authors (year) 

Number 

of signals 

used 

Techniques proposed  

Types of cross-

validation 

used 

Performance of the proposed 

algorithm in % 

Accuracy  Sensitivity Specificity 

Sharma et al. 

(2015a) [6] 

F: 50 

NF: 50 
EMD, entropy, LS-SVM 10-fold 87 90 84 

Sharma et al. 

(2015b) [7] 

F: 50 

NF: 50 

DWT, entropy, t-test, 

ROC, Bhattacharyya 

distance, Wilcoxon test, 

Kullback-Leibler 

distance, LS-SVM 

(Index proposed)  

10-fold 
84 ± 

10.74 
84 ± 15.77 84 ± 12.66 

Deivasigamani 

et al. (2016) [9] 

F: 50 

NF: 50 

DT-CWT, mean, SD, 

ANFIS 
- 99 98 100 

Das et al. 

(2016) [10] 

F: 50 

NF: 50 

EMD-DWT, entropy, 

KNN 
- 89.40 90.70 88.10 

Sharma et al. 

(2017) [8] 

F: 3,750 

NF: 3,750 

WFB, entropy, t-test, LS-

SVM 
10-fold 94.25 91.95 96.56 

Sharma et al. 

(2017) [11] 

F: 3,750 

NF: 3,750 

TQWT, entropy, LS-

SVM 
10-fold 95 - - 

Gupta et al. 

(2017) [12] 

F: 3,750 

NF: 3,750 

FAWT, entropy, 

Kruskal-Wallis test, LS-

SVM 

10-fold 94.41 93.25 95.57 

Bhattacharyya 

et al. (2017) 

[13] 

F: 50 

NF: 50 

TQWT, entropy, LS-

SVM 
10-fold 84.67 83.86 85.46 

Sriraam et al. 

(2017) [15] 

F: 3,750 

NF: 3,750 

Statistical, frequency-

based, entropy, FD, 

Wilcoxon test, SVM 

10-fold 92.15 94.56 89.74 

Arunkumar et 

al. (2017) [16] 

F: 50 

NF: 50 

Entropies, non-nested 

generalized exemplars  
10-fold 98 100 96 

Bhattacharyya 

et al. (2018) 

[14] 

F: 50 

NF: 50 

EWT, RPS, CTM, LS-

SVM 
10-fold 90 88 92 

Present study 
F: 3,750 

NF: 3,750 

Bispectrum, DFA, 

entropies, FD, Hjorth 

parameters, Hurst 

exponent Kolmogorov 

complexity, LLE, LZC, 

LS-SVM (Total of 23 

features used) 

10-fold 87.93 89.97 85.89 
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6. Future Development 

 

In future development, the CAD system will be combined with deep learning techniques. Deep 

learning is a sophisticated machine learning method, inspired by the neural network structure in 

the human brain. It is an established discipline that is employed in diverse research fields 

including speech recognition [58], object recognition [59], structural damage detection [60], and 

for diagnosis using physiological signals [61, 62, 63, 64, 65] and medical images [66]. It is noted 

that deep learning eliminates the need for feature extraction, selection, and classification. The 

model can self-learn via the training of the data. Therefore, deep learning techniques can be 

explored to improve the design of CAD systems, and to accurately localize the epileptogenic area 

of the brain using EEG signals. Additionally, application of a web-based implementation can be 

integrated with the proposed deep learning CAD system. With a web-based implementation, 

clinicians can analyze the EEG signals via cloud storage, and diagnoses made would be sent back 

to the local server almost instantaneously.   

Moreover, as part of the future work, the authors propose to incorporate both MRI images and 

EEG signals to identify the epileptogenic area of the brain. Providing two sources (image and 

signal) will ensure a more accurate localization of the epileptogenic zone. The concept of 

combining two or more different inputs together for analysis is termed radiomics. It is the 

extraction of a large feature set to gather further information for diagnosis of specific health 

conditions [67]. Consequently, the authors plan to implement the CAD system with radiomics 

methods, whereby different quantitative features are extracted from medical images to identify 

the epileptogenic zone [67, 68].     

 

7. Conclusion 

 

This study contrasts the performance of nine nonlinear features in differentiating two types of 

EEG signals. It can be seen that these nonlinear features can detect minute changes in the EEG 

signals of two (NF and F) classes. The developed CAD model has the potential to be deployed in 

clinical settings, to aid in offering an objective second opinion for detection of NF versus F EEG 

signals. Also, unique nonlinear plots have been proposed to discriminate the two classes visually. 
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