Characterization of Focal EEG Signals: A Review
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ABSTRACT

Epilepsy is a common neurological condition that can occur in anyone at any age.
Electroencephalogram (EEG) signals of non-focal (NF) and focal (F) types contain brain activity
information that can be used to identify areas affected by seizures. Generally, F EEG signals are
recorded from the epileptic part of the brain, while NF EEG signals are recorded from brain
regions unaffected by epilepsy. It is essential to correctly detect F EEG signals, when and where
they occur, as focal epilepsy can be successfully treated by surgical means. However, all EEG
signals are complex and require highly trained personnel for right interpretation. To overcome
the associated challenges, in this study a computer-aided detection (CAD) system to aid in the
detection of F EEG signals has been developed, and the performance of nonlinear features for
differentiating F and NF EEG signals is compared. Moreover, it is noted that nonlinear features
can effectively capture concealed patterns and rhythms contained in the EEG signals. Overall, it
was found that the CAD system will be useful to clinicians in providing an accurate and objective
paradigm for localization of the epileptogenic area.

Keywords — Computer-aided detection system; electroencephalogram signals; epilepsy; focal;
non-focal.
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1. Introduction

Epilepsy is a persistent brain disorder that can afflict anyone at any age [1]. It is defined as the
occurrence in a patient of two or more unprovoked seizures. Seizures occur due to the excessive
electrical discharges of brain cells. As stated by the World Health Organization, currently, nearly
50 million people globally suffer from epilepsy [2]. This condition affects the patient socially as
well as economically [2]. It has been reported that epilepsy attributes to approximately 0.6% of
the global burden of disease. Nonetheless, patients suffering from epilepsy can lead a normal life
with the appropriate treatment. Therefore, it is crucial to be able to correctly diagnose epilepsy

and to administer the right treatment to the patient.

The electroencephalogram (EEG) records brain activity from the scalp and can be used to
diagnose epilepsy. Quantitative analysis of EEG characteristics can be helpful to diagnose the
condition. Magnetic resonance imaging (MRI) is another modality useful in the diagnosis of
epilepsy. Currently, EEG is the preferred data type employed for epilepsy diagnosis due to its

low cost.

Focal epilepsy is a form of the condition that occurs in certain brain areas [3]. The focal (F) EEG
signals are acquired from this region, where the first ictal EEG changes are observed. Non-focal
(NF) EEG signals are obtained from brain regions that do not contribute to seizure onset. Both F
and NF EEG signals lack seizure segments [3]. It is reported that greater than 20% of patients are
affected by generalized epilepsy which manifest from the entire brain, while more than 60% of
patients suffer from focal (partial) epilepsy, localized to a smaller region of the brain [3]. It is
difficult to treat patients with focal epilepsy by medication alone [3]; hence the need to localize
the epileptic zone. Thus, detection and discernment of F and NF signals is an important area of
quantitative research in this field, as the localization of epileptogenic regions is crucial for
successful epilepsy surgery. Since treatment of focal epilepsy often involves removal of the

affected brain area surgically [4], it is crucial to discern F EEG signals and their origin.

Substantial research work has been done thus far to characterize F versus NF signals. Typically,
F EEG signal morphology is characterized by more rhythmic and less chaotic behavior as
compared to NF EEG signals [5]. However, it is challenging to identify the EEG signals visually,
due to the presence of low amplitude and random components. Thus, computer-aided detection
(CAD) systems have been proposed to develop an automated tool for aid in the identification of

EEG characteristics. Several have thus far been conducted, summarized in Table 2. Sharma et al.



[6] decomposed EEG signals with an empirical mode decomposition (EMD) technique and
extracted entropy features. Their group found an accuracy for EEG classification of 87%. In their
subsequent work, they analyzed the signals using the discrete wavelet transform (DWT), and
extracted entropy features from the decomposed signals [7]. This approach yielded an accuracy
of 84 + 11%. In their latest study, they utilized the tunable-Q wavelet transform (TQWT) prior to
extraction of entropy features. This novel decomposition technique achieved a diagnostic

accuracy of 95% [8].

Deivasigamani et al. [9] proposed a dual-tree complex wavelet transform (DTCWT) method to
decompose EEG signals and obtained mean and standard deviation (SD) values from the
decomposed coefficients. They reported a sensitivity of 98% and specificity of 100% in classifying
the signals into F and NF classes. Das et al. [10] combined two decomposition methods, namely
the EMD and DWT, and applied these methods to the data. Entropy features were once again
extracted and were then classified with an accuracy of 89%. Sharma et al. [11] employed a wavelet
filter bank and an entropy feature extraction algorithm to separate NF from F EEG signals. The

method accuracy was 94%.

Gupta et al. [12] applied the flexible analytic wavelet transform (FAWT) and subjected the signals
to a maximum of 15 levels of decomposition. They then extracted entropy features from the
coefficients and characterized them into two classes. They obtained a sensitivity and specificity
of 93% and 96%, respectively. Bhattacharrya et al. [13] employed TQWT for decomposition and
extracted entropy features from the EEG data to achieve an accuracy of 85%. In their subsequent
study, Bhattacharrya et al. [14] proposed to decompose the EEG signals into rhythms using the
empirical wavelet transform (EWT), and subjected these rhythms to a reconstructed phase space
(RPS) analysis to distinguish between F and NF signals. Their novel algorithm yielded a
sensitivity and specificity of 88% and 92%, respectively. Sriraam et al. [15] investigated the
capabilities of multi-features in the differentiation of NF and F signals. They adopted statistical,
frequency-based, and nonlinear feature extractors. It was reported that the integration of different
features could localize the epileptogenic areas of the brain with an accuracy of 92%. Arunkumar
et al. [16] extracted several entropy features, and subjected these features to a non-nested

generalized exemplars classifier. Their methodology achieved an accuracy level of 98%.

It can be noted from Table 2 that nonlinear features are commonly employed for epilepsy analysis.
The motivation of our study is to evaluate the performances of the nonlinear features utilized in

the CAD algorithm. The entire database is employed to extract widely used nonlinear features.



These nonlinear features have shown clear separation between the two groups. Also, unique
recurrence, bispectrum and cumulant plots are used for class separation. Moreover, the

challenges associated with the CAD system, and future developments, are discussed.

2. Data Types Used for Analysis

The EEG signals discussed herein were obtained from the publicly available Bern-Barcelona EEG
database [5]. They were collected at the Department of Neurology of the University of Bern from
five patients suffering from epilepsy. The patients underwent long-term intracranial EEG
recording with intracranial strip and depth electrodes. All patients had been diagnosed with

longstanding pharmacoresistant temporal lobe epilepsy.

A total of 3,750 F EEG signals and 3,750 NF EEG signals were used in this study (N = 10,240
samples per signal). The database consists of bivariate EEG signals in the X and Y time series.
Figure 1 shows an example of F and NF EEG signals in the X-series, Y-series and X-Y series

respectively.
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Figure 1: A sample of (a) F and (b) NF EEG signal in the X-series, (c) F and (d) NF EEG signals in the Y-series, and
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3. Computer-Aided Detection System

The CAD system is employed to investigate the effectiveness of the various feature extraction
techniques in the detection of NF and F EEG signals. Figure 2 is a typical block diagram of the
development of a CAD system. It encompasses the input of NF and F EEG signals followed by
the pre-processing of the signals. Thereafter, several feature extraction methods are implemented
to obtain useful and discriminative characteristics. These features are ranked according to their

statistical significance. Lastly, the highest-ranked features are input to the classifier.

The subsequent sections describe the different processes within the CAD systems.

.).).).).

Figure 2: A typical block diagram of a CAD system.

3.1 Pre-processing

Usually, EEG signals are subjected to pre-processing for removal of artifacts and noise prior to
feature extraction. However, no pre-processing was performed in this study, as the signals are
already pre-processed when downloaded from the database. Nonetheless, we have subjected
these signals to a differencing operation to obtain the EEG signals in the X-Y series (see Figure

1(e) and (f)) before the extraction of features [17].

3.2 Extraction of Nonlinear Features

In this study, nine nonlinear features were extracted and compared. The use of nonlinear features

can be helpful to describe salient properties of EEG signal morphology, which tend to appear



complex and chaotic [18]. Extraction of such nonlinear features has been widely implemented to

determine the important characteristics of EEG signals [18].
a. Detrended Fluctuation Analysis (DFA)

The DFA is often used to detect inherent self-similarity characteristics of the EEG [19]. The variant
of the DFA, namely the root mean square (RMS) multi-fractal DFA is implemented together with
the DFA feature.

b. Entropies

The entropy feature is useful to evaluate the uncertainty and irregularity present in EEG signals
[20]. In general, the entropy of the EEG signal is higher when the variability and complexity of

the EEG signals increases.

The entropy types extracted in this study are the modified multi-scale entropy (MMSE) with ten
scales employed [21], sample [22], approximate [23], fuzzy [24], Kolmogorov-Sinai [25], Renyi
[26], Shannon [27], bispectrum entropy 1, bispectrum entropy 2, and bispectrum phase entropy
[28], Tsallis [29], wavelet [30], and permutation [31].

c. Fractal Dimension (FD)

The fractal dimension or FD metric [32] can be utilized to compare the complexity of details in
the EEG. Hence, it enables detection of EEG signal patterns and details that may not be evident

visually.
d. Hjorth

There are three Hjorth parameters, namely the mobility, complexity, and activity, which are used

to quantify EEG signal morphology [33].
e. Hurst Exponent

The Hurst exponent [34] is an estimation of predictability and self-similarity in the EEG. A greater

magnitude for the Hurst exponent is indicative of a smoother and less complicated EEG signal.
f. Kolmogorov Complexity

This parameter describes the characteristics of the EEG signals [35]. Therefore, the more random

the signals are, the longer is the length of the description.



g. Largest Lyapunov Exponent (LLE)

The LLE is computed to obtain an estimate of the degree of chaos present in the signals [36].

Therefore, it is noted that the higher the LLE value, the more complex the signals are.
h. Lempel-Ziv Complexity (LZC)

The LZC [37] is used to measure the repetitiveness of the EEG signals. Hence, the more repetitive

the signal, the higher the LZC value.
i. Recurrence Qualitative Analysis (RQA)

The RQA measures the number of times of recurrences in order to evaluate the complexity of the
EEG signals [38]. The parameters of the RQA include laminarity, transitivity, determinism,
trapping time, the entropy of diagonal line lengths, mean diagonal line length, maximal vertical
line length, maximal diagonal line length, recurrence time (1 type and 2" type), recurrence time

entropy, and the recurrence rate [39, 38, 40, 41].

3.3 Feature Ranking

Extracted features can be ranked according to the student t-test, corresponding to the level of
statistical significance [42]. In reference to the literature (see Table 2), several other feature ranking
techniques, namely the receiver operating characteristic (ROC) approach [43], Bhattacharyya
distance [44], Wilcoxon test [45], the Kullback-Leibler distance [43], and the Kruskal-Wallis test

[46], may also be used to order extracted features according to level of significance.

3.4 Classification

Classification is the last step in the formation of the CAD system. Based upon the literature (see
Table 2), the most commonly used classifier is the least squares-support vector machine (LS-SVM)
[47]. However, the adaptive neuro-fuzzy inference system (ANFIS) [48], k-nearest neighbor
(KNN) [49], and the non-nested generalized exemplars [50] classifiers are also used. Herein, the
LS-SVM classifier using polynomial 3 is implemented in accord with the majority of published

work, which uses this classifier. Also, the 10-fold cross-validation strategy is adopted in this study.
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4. Results

In this study, nonlinear features were extracted from EEG signals. When 23 features were
extracted using the LS-SVM for classification, the maximum accuracy of 87.93% was obtained,
with a sensitivity and specificity of 89.97% and 85.89%, respectively. All extracted features are
listed in Table 1 in descending order according to statistical significance. It is noted that all 52 F

and NF features recorded in the table have a p-value of < 0.01.

According to Table 1, the MMSE is highest ranked. This implies that the MMSE is the most
statistically significant as compared to other features. MMSE quantifies the pattern and detects
regularity in the EEG signals. It can be noted that most of the entropy features have higher values
for NF than for F EEG signals. This is typically caused by the F EEG signals being more periodic
and less random. Figure 3 is a graphical representation of the top ten extracted features. Higher

mean values are evident for NF as compared to F EEG signals.

The RQA features in Table 1 reflect higher values in the F class as compared to the NF class. This
is because the RQA evaluates the number of patterns and occurrences of spikes and subtle
changes in the EEG signals, which are more present in F EEG. Thus, the more rhythmic focal EEG
signals result in higher mean RQA parameters, which can be useful identify concealed signal
patterns. Similarly, the DFA features portray higher values in the F class versus NF class, as the

DFA parameter detects rhythmic patterns present in the signals.

Figures 4 to 6 display the typical recurrence, bispectrum, and cumulant plots of F and NF EEG
signals, respectively. The F recurrence plot in Figure 4 appears more periodic and homogenous,
whereas the NF recurrence plot portrays a more random and inconsistent depiction. In Figure 5,
the two plots are unique, displaying different characteristics. The amplitudes of the F bispectrum
are larger, while the NF bispectrum plot reflects the presence of smaller amplitudes. Additionally,
the F plot has more consistent peaks as compared to the NF plot. This means that the bispectrum
features in the F plot are more periodic and regular. Similarly, the F cumulant plot has higher

amplitudes than the NF cumulant plot in Figure 6.

These figures indicate that the extracted nonlinear features (recurrence, bispectrum, and
cumulants) can be efficaciously utilized for classification, and that they provide visually apparent

distinctions between the two classes.
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Figure 3: The top 10 highly-ranked features extracted from the two classes of EEG signals, with their

corresponding mean and SD values.
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Figure 6: A sample of (a) F and (b) NF X-Y difference cumulants plots.

Table 1: The mean and SD value of the extracted features, p < 0.01.

E NF
No. Features extracted Mean + SD Mean + SD
MMSE: E10 0.659 +0.128 0.768 +0.140
MMSE: E9 0.646 +0.130 0.757 £ 0.145

MMSE: E8 0.633 £0.133 0.747 £ 0.150
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0.585+0.135

0.856 + 0.0973

0.397 +0.124

0.551 +0.135

0.512 +0.135

0.448 +0.129

0.372 +0.118

0.742 + 0.127

0.581 + 0.0795

0.591 +0.120

0.492 + 0.0903

0.420 + 0.106

0.772 £ 0.0673

0.275+0.0725

0.324 + 0.0606

0.122 +0.0781

0.273 +0.0916

0.409 + 0.238

0.719 + 0.0579

0.210 + 0.0776

0.974 £ 0.00170

0.783 + 0.0677

0.0709 +0.0910

0.0260 + 0.0501

0.869 + 0.0889

0.370 £ 0.107

0.635 + 0.0450

0.731 £ 0.156

0.700 + 0.160

0.756 + 0.155

0.511+0.174

0.665 +0.165

0.627 +0.173

0.562 +0.173

0.476 + 0.157

0.634 +0.166

0.651 +0.111

0.688 + 0.157

0.428 +0.100

0.508 +0.175

0.728 + 0.0833

0.237 +0.0616

0.293 + 0.0535

0.0865 + 0.0542

0.224 + 0.0941

0.298 + 0.231

0.693 + 0.0564

0.247 +0.108

0.974 + 0.00130

0.761 +0.0711

0.0483 + 0.0466

0.0149 + 0.0388

0.884 + 0.0779

0.393 +£0.138

0.645 + 0.0599
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32 RQA: Recurrence rate 0.332 +0.0467 0.325 +0.0366
33 Kolmogorov complexity 1+0 1+0.001

34 Bispectrum: Entropy 1 0.581 + 0.0868 0.595+0.114
35 RMS Multi-Fractal DFA 10 0.0915 + 0.0869 0.0799 +0.0838
36 RMS Multi-Fractal DFA 6 0.0798 +0.0730 0.0701 +0.0740
37 Tsallis entropy 0.0305 + 0.0523 0.0243 +0.0433
38 RMS Multi-Fractal DFA 5 0.0776 +0.0728 0.0681 + 0.0754
39 Wavelet entropy 0.0245 +0.0493 0.0188 +0.0396
40 RMS Multi-Fractal DFA 1 0.0629 +0.0567 0.0554 +0.0634
41 RMS Multi-Fractal DFA 3 0.0761 +0.0709 0.0673 +0.0732
42 LLE 0.456 +0.19 0.479 £ 0.205
43 RMS Multi-Fractal DFA 2 0.0880 +0.0828 0.0779 +0.0886
44 Permutation entropy 0.815+0.0571 0.822 +0.059
45 RMS Multi-Fractal DFA 8 0.0741 £ 0.0711 0.0659 +0.0732
46 Hjorth complexity 0.555 + 0.0970 0.565 + 0.0993
47 RMS Multi-Fractal DFA 7 0.0739 +0.0700 0.0662 + 0.0709
48 RMS Multi-Fractal DFA 4 0.0800 +0.0726 0.0717 £ 0.0815
49 RMS Multi-Fractal DFA 9 0.0831 +0.0733 0.0749 +0.0832
50 Hurst exponent 0.758 £ 0.0653 0.754 £ 0.0845
51 LzC 0.500 + 0.091 050

52 Bispectrum: Phase entropy 0.971 £0.528 0.971 £0.530

where EX refers to the different scales (1 to 10) of the MMSE feature.

where RMS Multi-Fractal DFA X refers to the different scales (1 to 10) of the variant DFA feature.

5. Discussion

Published CAD system algorithms for automatic detection of F EEG signals are summarized in

Table 2. It is evident from the table that most of the systems employed various decomposition
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techniques prior to the extraction of features. These decomposition approaches include the EMD
[51], DWT [52], DT-CWT [53], WEB [54], TQWT [55], FAWT [56], and EWT [57]. Hence, it is noted
that a combination of decomposition techniques and nonlinear features have successfully and

efficiently been used to characterize F and NF EEG signals.

The entropy feature extraction technique is often used in quantitative epilepsy analysis [6, 7, 10,
8,11, 12, 13, 15, 16]. This may be because entropy features are simple to implement, and they can
also well quantify abrupt changes in EEG morphology. Therefore, it is used as a feature by many

investigators during the development of CAD systems.

Nonetheless, Deivasigamani et al. [9] proposed to calculate the mean and SD of the coefficients
obtained from the decomposed EEG signals and separate them into their corresponding classes
(F or NF). Also, Bhattacharyya et al. [14], instead of extracting entropy features, have utilized the
reconstructed phase space (RPS) with central tendency measure (CTM) to differentiate the two

classes of EEG signals.

Overall, it can be noted that all nine nonlinear features extracted are highly discriminative

between F and NF classes, even though entropy features performed better in differentiation.
The main highlights of this study are as follows:

i.  This is the first study to compare the performances of many nonlinear features for F and
NF EEG signal quantitative analysis.
ii. ~ The nonlinear features are able to recognize subtle patterns present in the EEG signals,
and are assistive to characterize them according to their respective classes.
iii. =~ We have utilized the entire EEG database in this review.
iv.  Unique recurrence, bispectrum and cumulant plots are proposed to discriminate the two

classes of EEG signals visually.
The disadvantages of our findings are:

i.  Quantitative analysis for epilepsy is computationally intensive. Incorporation of a
graphics processing unit would be useful to better handle the level of complexity during
analysis of EEG morphology.

ii. ~ More subjects are required to validate the CAD system. Currently, the database consists

of the data from five subjects.
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Table 2: A summary of published journal articles using the Bern-Barcelona EEG database for automated detection

of F and NF EEG signals.
Number Types of cross- Performance of the proposed
Authors (year) of signals Techniques proposed validation algorithm in %
used used Accuracy Sensitivity Specificity
Sharmaetal. F: 50 EMD, entropy, LS-SVM 10-fold 87 90 84
(2015a) [6] NF: 50 » CMHOPY,
DWT, entropy, t-test,
ROC, Bhattacharyya
Sharma et al. F: 50 distance, Wilcoxon test, 84 +
(2015b) [7] NEF: 50 Kullback-Leibler 10-fold 1074 ~ S4x1577 Bax1266
distance, LS-SVM
(Index proposed)
Deivasigamani  F: 50 DT-CWT, mean, SD,
- 1
etal. (2016) [9]  NF:50 ANFIS 9 % 00
Das et al. F: 50 EMD-DWT, entropy,
- A .7 1
(2016) [10] NF: 50 KNN 89.40 9070 88.10
Sharma et al. F: 3,750 WEB, entropy, t-test, LS-
(2017) [8] NF:3750 SVM 10-fold 94.25 91.95 96.56
Sharma et al. F: 3,750 TQWT, entropy, LS-
10-fold 95 - -
(2017) [11] NF:3,750 SVM ©
FAWT, entropy,
Gupta et al. F: 3,750 -
(2017) [12] NE: 3,750 Kruskal-Wallis test, LS- 10-fold 94 .41 93.25 95.57
SVM
Bhattacharyya
F: 50 TQWT, entropy, LS-
et al. (2017) NF: 50 SUM 10-fold 84.67 83.86 85.46
[13]
Sriraam et al F- 3750 Statistical, frequency-
(2017) [15] ’ NF"3 750 based, entropy, FD, 10-fold 92.15 94.56 89.74
o Wilcoxon test, SVM
Arunkumar et F: 50 Entropies, non-nested
10-fold 98 1 9
al. (2017) [16] NF: 50 generalized exemplars 0-fo 00 6
Bhattacharyya
F: 50 EWT, RPS, CTM, LS-
et al. (2018) NF: 50 SVM 10-fold 920 88 92
[14]
Bispectrum, DFA,
entropies, FD, Hjorth
F: 3,750 parameters, Hurst
Present study NF'/ 3750 exponent Kolmogorov 10-fold 87.93 89.97 85.89

complexity, LLE, LZC,
LS-SVM (Total of 23
features used)
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6. Future Development

In future development, the CAD system will be combined with deep learning techniques. Deep
learning is a sophisticated machine learning method, inspired by the neural network structure in
the human brain. It is an established discipline that is employed in diverse research fields
including speech recognition [58], object recognition [59], structural damage detection [60], and
for diagnosis using physiological signals [61, 62, 63, 64, 65] and medical images [66]. It is noted
that deep learning eliminates the need for feature extraction, selection, and classification. The
model can self-learn via the training of the data. Therefore, deep learning techniques can be
explored to improve the design of CAD systems, and to accurately localize the epileptogenic area
of the brain using EEG signals. Additionally, application of a web-based implementation can be
integrated with the proposed deep learning CAD system. With a web-based implementation,
clinicians can analyze the EEG signals via cloud storage, and diagnoses made would be sent back

to the local server almost instantaneously.

Moreover, as part of the future work, the authors propose to incorporate both MRI images and
EEG signals to identify the epileptogenic area of the brain. Providing two sources (image and
signal) will ensure a more accurate localization of the epileptogenic zone. The concept of
combining two or more different inputs together for analysis is termed radiomics. It is the
extraction of a large feature set to gather further information for diagnosis of specific health
conditions [67]. Consequently, the authors plan to implement the CAD system with radiomics
methods, whereby different quantitative features are extracted from medical images to identify

the epileptogenic zone [67, 68].

7. Conclusion

This study contrasts the performance of nine nonlinear features in differentiating two types of
EEG signals. It can be seen that these nonlinear features can detect minute changes in the EEG
signals of two (NF and F) classes. The developed CAD model has the potential to be deployed in
clinical settings, to aid in offering an objective second opinion for detection of NF versus F EEG

signals. Also, unique nonlinear plots have been proposed to discriminate the two classes visually.
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